Lớp 10Toán

Bài 8 trang 119 SGK Hình học 10 nâng cao – Giải Toán 10

Ôn tập chương 3

Bài tập

Bài 8 (trang 119 SGK Hình học 10 nâng cao)

Cho hai đường tròn x2 + y2 + 2A1x + 2B1y + C1 = 0 và x2 + y2 + 2A2x + 2B2y + C2 = 0. Giả sử chúng cắt nhau tại điểm M, N. Phương trình 2(A1 – A2)x + 2(B1 – B2)y + C1 – C2 = 0 có phải là phương trình của đường thẳng không? Nếu nó là phương trình của đường thẳng thì đường thẳng này có đi qua M và N không?

Lời giải:

Bạn đang xem: Bài 8 trang 119 SGK Hình học 10 nâng cao – Giải Toán 10

Do hai đường tròn (C1): x2 + y2 + 2A1x + 2B1y + C1 = 0

(C2) : x2 + y2 + 2A2x + 2B2y + C2 = 0 cắt nhau tại hai điểm M, N

(C1) và (C2) không đồng tâm

A1 – A2 và B1 – B2 không đồng thời bằng không.

Tọa độ giao điểm của hai đường tròn là nghiệm của phương trình x2 + y2 + 2A1x + 2B1y + C1= x2 + y2 + 2A2x + 2B2y + C2

2(A1 – A2)x + 2(B1 – B2)y + C1 – C2 = 0(*) là phương trình đường thẳng

Vậy nếu (C1) và (C2) cắt nhau tại M, N thì tọa độ M, N thỏa mãn phương trình (*) hay (*) là phương trình đường thẳng MN.

Tham khảo toàn bộ: Giải bài tập Toán 10 nâng cao

Đăng bởi: THPT Ninh Châu

Chuyên mục: Lớp 10,Toán 10

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button