Lớp 11Toán

Bài 8 trang 105 SGK Hình học 11

Bài 3: Đường thẳng vuông góc với mặt phẳng

Bài 8 trang 105 SGK Hình học 11

Cho điểm S không thuộc mặt phẳng (α) có hình chiếu trên (α) là điểm H. Với điểm M bất kì trên (α) và không trùng với H, ta gọi SM là đường xiên và đoạn HM là hình chiếu của đường xiên đó.

Chứng minh rằng:

Bạn đang xem: Bài 8 trang 105 SGK Hình học 11

a) Hai đường xiên bằng nhau khi và chỉ khi hai hình chiếu của chúng bằng nhau;

b) Với hai đường xiên cho trước, đường xiên nào lớn hơn thì có hình chiếu lớn hơn và ngược lại, đường xiên nào có hình chiếu lớn hơn thì lớn hơn.

Lời giải

Hướng dẫn

a) Chứng minh các tam giác vuông bằng nhau.

b) Sử dụng định lí Pytago.

Giả sử ta có hai đường xiên SM, SN và các hình chiếu HM, HN của chúng trên mp (α).

Vì SH ⊥ mp(α)

⇒ SH ⊥ HM và SH ⊥ HN

⇒ ΔSHN và ΔSHM vuông tại H.

Áp dụng định lí Py-ta- go vào hai tam giác vuông này ta có:

⇒ SM2 = SH2 + HM2;

và SN2 = SH2 + HN2.

a) SM = SN ⇔ SM2 = SN2 ⇔ HM2 = HN2 ⇔ HM = HN.

b) SM > SN ⇔ SM2 > SN2 ⇔ HM2 > HN2 ⇔ HM > HN.

Xem toàn bộ Giải Toán 11: Bài 3. Hai đường thẳng vuông góc với mặt phẳng

Đăng bởi: THPT Ninh Châu

Chuyên mục: Lớp 11, Toán 11

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button