Lớp 10Toán

Bài 30 trang 66 SGK Hình học 10 nâng cao – Giải Toán 10

Bài 3: Hệ thức lượng giác trong tam giác

Bài 30 (trang 66 SGK Hình học 10 nâng cao)

Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AC và BD. Chứng minh rằng AB2 + BC2 + CD2 + DA2 = AC2 + BD2 + 4MN2.

Lời giải:

Bạn đang xem: Bài 30 trang 66 SGK Hình học 10 nâng cao – Giải Toán 10

Trong tam giác ABD ta có:

AB2 + AD2 = 2AN2 + BD2/2 (1)

Trong tam giác CBD ta có :

CD2 + CB2 = 2CN2 + BD2/2 (2)

Cộng vế với vế của (1) và (2) ta có :

AB2 + BC2 + CD2 + DA2 = 2(AN2 + CN2) + BD2(3)

Xét tam giác CAN ta có :

AN2 + CN2 = 2MN2 + AC2/2 (4) vì M là trung điểm AC)

Thay (4) vào (3) ta được :

AB2 + BC2 + CD2 + DA2 = 2[2MN2 + AC2/2] + BD2 = AC2 + BD2 + 4MN2

Tham khảo toàn bộ: Giải bài tập Toán 10 nâng cao

Đăng bởi: THPT Ninh Châu

Chuyên mục: Lớp 10,Toán 10

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button